Vol.43, No.8 Aug. 2006

固体热容激光器的设计和功率标定

尹宪华 侯立群 董 玥 祖继锋 朱健强 范滇元 (中国科学院上海光学精密机械研究所,上海 201800)

摘 要 固体热容激光器(SSHCL)作为下一代最佳候选高功率激光器,引起人们广泛关注。介绍了固体热容激光器工作原 理、光抽运期间介质板内荧光分布和温度分布、介质板冷却以及功率标定。详细讨论了激光介质温度对激光输出功率的影 响,对有关设计要点也作了相关分析。
 关键词 固体热容激光器;光学畸变;功率标定

中图分类号:TN248.1

Solid State Heat Capacity Laser: Design and Power Scaling

YIN Xianhua HOU Liqun DONG Yue ZU Jifeng ZHU Jianqiang Fan Dianyuan (Shanghai Institute of Optics and Fine Mechanics, The Chinese Academy of Sciences, Shanghai 201800)

Abstract As the best candidate for the high power lasers in next generation, the solid state heat capacity laser (SSHCL) has attracted extensive attention. The principles, power scaling of SSHCL, distributions of fluorescence, temperature in a pumped slab cooling, and slab are presented. The effects of temperature in medium slab on the output power of laser are discussed in detail. Several key points about design are also described.

Key words solid state heat capacity laser; optical distortion; power scaling

1 引言

在大脉冲能量工作下的固体 激光器输出功率一直受到工作时 产生废热的限制,大多数固体激光 器系统在工作时都要进行连续冷 却,由于冷却过程与激光产生过程 同时进行,因而在激光工作介质较 冷的表面和较热的内部之间产生 较大的温差,温差梯度将引起机械 应力,使得增益介质变形,最终导 致光束波面畸变,光束质量变差, 这对实际应用非常不利。

针对上述问题,美国利弗莫尔 实验室(LLNL)首先提出了固体热 容激光器(Solid State Heat Capacity Laser,SSHCL)概念^[1]:在激光发射 过程中,将产生的废热保留在激光 介质内,并且在介质内迅速扩散; 每次发射激光产生的废热而引起 激光介质平均温升量很小,这个量 由介质内单位体积热量和介质的 热容量来确定。在激光发射结束后 (针对实际应用,确定一般发射时间 为 10s),激光介质将在 30s 至几分 钟内被冷却,因此光束波面避免了 因冷却过程产生较大应力而引起 的畸变。固体热容激光器的激光发 射功能与激光介质冷却功能在时 间上分开,具有输出光束质量好, 系统结构简单紧凑等优点。目前热 容激光器首选的激光介质是掺钕 钆镓石榴石(Nd:GGG),它是一种 以 Nd³⁺离子为激活体的四能级激 光晶体,具有热导率大、抗热冲击 阻抗大和介质材料尺寸大等优点。 国外有关文献对热容激光器 作了一些理论描述,但均只给出物 理过程的结果^[1-2]。本文对固体热容 激光器工作中的主要物理过程进 行了数值标量,并尽可能给出物理 过程的解析解,理论计算同国外实 验结果作了比较,从而对这种激光 器的性能有更深刻的理解。

2 热容激光器抽运结构

美国利弗莫尔国家实验室 (LLNL) 在研究和开发武器级大能 量激光器时提出以下三点⁽³⁾:

 1)采取热容工作方式,避免实 时冷却在介质内引起大的温度梯 度。

2) 采用半导体激光(LD)代替 氙灯抽运固体激光器,并且增益介 质板垂直光轴放置取代以往布儒

收稿日期: 2006-05-17; 收到修改稿日期: 2006-06-05

作者简介: 尹宪华(1954~), 男, 江苏人, 高级工程师。现主要从事大能量固体激光技术研究。E-mail: yxh_siom@126.com

图 1 增益板抽运和冷却示意图

 $\alpha = 2.5 \text{ cm}^{-1}, R_p = 0.1 与掺杂原 子数分数为 0.8%的 Nd³⁺:GGG 的吸 收系数对应。图 2 表明抽运光强分$

图 2 在面抽运条件下,吸收光是介质板厚度的函数(归一化)

的厚度方向行走一次并没有被完 全吸收,引进一个抽运光界面反射 率 *R*_p,则沿介质板厚度方向被吸收 的抽运光密度ρ_{abs}为^[4-5]

$$\begin{split} \rho_{abs}(y) &= \frac{\alpha P_{p} \exp\left(-\frac{\alpha b}{2}\right)}{\omega L \ 1 - R_{p} e^{-\alpha b}} \cosh(y) \ (1) \\ & \& \mathbb{E} \ R_{p} = \frac{(n-1)^{2}}{(n+1)^{2}}, n = 1.96 \ \mathbb{E} \ fmtox{L} \\ & \text{bhy bhy } \mathbb{E}; P_{p} \ \mathbb{E} \ here \$$

布的形状只与 α 有关,而分布量的 大小与 α ,**b**,**R**_p和**P**_p/ ω L有关。

利用式(1),可以定义抽运效率 η_{abs} (或称为吸收效率)为总吸收功 率与总入射功率之比:

$$\eta_{abs} = \frac{\omega L \int_{-(b/2)}^{(b/2)} \rho_{abs}(y) dy}{P_{p}} = \frac{1 - e^{-cb}}{1 - R_{p}e^{-cb}}$$
(2)

很明显 η_{abs} 只与无量纲量 R_p 和 α·b 有关;变量 α·b 为吸收深 度,正比于激光介质的掺杂浓度和 介质板的厚度。从公式(2)看出,不

斯特角放置,可以减小像差、改善板内热均匀分布,这两项措施能降 低光束波面畸变几个量级,使输出 能量提高 2-3 倍;

3)采用腔内波前控制系统,非
 稳腔设计包括变形镜和其它光学
 辅助装置。

这三点给出了光抽运大能量 固体热容激光器结构的轮廓,图1 是该激光器抽运和冷却示意图。为 了以后讨论问题方便,先对增益介 质板的相关坐标系统作定义:板的 宽度沿 *x* 轴方向,板的厚度沿 *y* 轴 方向,长度沿 *z* 轴方向。*x*-*z* 平面 为抽运面和冷却面,*y* 轴方向与抽 运光方向和激光方向平行。板的全 宽度为 *w*, 全厚度为 *b*, 全长度为 *L*, 以增益板的质量中心为原点, 有-*w*/2<*x*<*w*/2,-*b*/2<*y*<*b*/2,和-*L*/ 2<*z*<*L*/2

3 抽运均匀

采用大面积半导体激光列阵 对增益介质板进行面抽运,能在抽 运面上获得较均匀的光强分布,大 大提高了输出光束的质量;但增益 板在沿厚度方向对抽运光的不均 匀吸收,仍然会在增益板表面产生 应力,限制了增益板的最大功率提 取。为此有必要先了解一下抽运光 沿增益板厚度方向的吸收情况。简 单起见,假设抽运光是均匀的平面 波,在增益板内抽运光强度只是 *y* 函数。另外,考虑到抽运光在沿板

论吸收系数怎样,当 R_p 趋于1时, η_{abs} 也趋于1。但从有效工作区域考虑,仍希望 R_p 值尽可能小。

4 介质板内温度分布和表面 应力

如图 1 所示,有两束均匀平面 波抽运光分别从±y 二个方向入射 在介质板的两个面上,也就是介质 板的温度在 x-z 平面上为均匀分 布。忽略介质板的边缘效应,并认 为光抽运期间介质板的六个面与 外界绝缘。在板的厚度方向上,由 于介质对抽运光吸收不均匀,温度 梯度只是 y 的函数,这样问题就可 以简化为解一维无限大平面热传 导方程。光抽运期间,介质板的温 度分布满足

$$\begin{vmatrix} \frac{\partial T(y,t)}{\partial t} - \gamma \frac{\partial^2 T(y,t)}{\partial y^2} = \frac{\gamma \eta I \alpha}{k} f(y) \\ \cdots (-b/2 < y < b/2, \cdots t > 0), \\ T(y,t)|_{t=0} = 0 \\ \frac{\partial T(y,t)}{\partial y}|_{y=\pm b/2} = 0 \end{aligned}$$
(3)

式中,非齐次方程的有源项表示光 量子转换过程中在介质内形成的 热源,方程的第二类边界条件表示 介质对外绝热, γ 为热扩散系数 (m²/s), η_t 为热转换系数(与抽运光 耦合系数、被吸收光强、量子转换、 斯托克斯转换等参量有关),K为热 传导系数 (W·m⁻¹·K⁻¹),I为半导体 激光单位面积输出的抽运光强(W/ m²), α 为吸收系数(1/m),f(y)是介 质板对抽运光的吸收函数。

其解为四:

$$T(y,t) = \frac{2\gamma \eta_t I [1 - \exp(-\alpha b)]}{bk} t + \\ \cos \frac{2\pi}{b} y \frac{1}{\pi^2} \frac{I \eta_t b [1 - \exp(-\alpha b)]}{k} \\ \frac{\alpha^2 b^2}{\alpha^2 b^2 + 4\pi^2} \Big[1 - \exp\left(-\gamma \frac{4\pi^2}{b^2} t\right) \Big] (4)$$

由式(4)可得到抽运期间介质板 y 方向任意二点温差和介质板表面 应力σ_s分布 「激光与光电子学进展

aser & Optoelectronics Progress

图 4 温度分布和应力分布是介质板厚度的函数

$$\sigma_{\rm s} = \frac{2\alpha E}{3(1-\nu)} (T_{\rm ave} - T_{\rm s}), \qquad (5)$$

其中: T_{ave} 是介质板的平均温度, T_s 是介质板的表面温度, α' 为激光介 质的膨胀系数 ($80 \times 10^{-7}/K$),E 为杨 氏模量(220×10^9 Pa), ν 为泊松系数 (0.3)。

由于激光介质在工作期间不 冷却,导致在介质板表面形成最高 温度,而介质板中心温度最低。在 板中心附近形成张应力,在板表面 附近形成压应力。通常激光介质在 压应力下的表面损伤阈值比张应 力的表面损伤阈值大5倍,因此在 热容方式下运行可以比实时冷却 方式运行允许更高的抽运功率,从 而允许更高的平均功率输出。由式 (4)模拟了 100kW 级热容激光器增 益板厚度方向的温度分布。温度分 布形状在抽运光照射的 1s 时间过 程内就稳定了,以后的照射过程中 只是整体温度提高。结果表明:当 I=1.7 MW/m², $\alpha b=5, f=200$ Hz 时, 介质板平均温度升高 84K,每个抽 运脉冲使介质板的平均温度上升 0.04K, ΔT |_{s-c}=17K, σ |_s=-13 MPa, \uparrow 质板表面温度升高 91K。

虽然热容激光介质内的温度 梯度是轴向的,不形成热透镜;但它 会引起腔内光程变化,使得谐振腔 失调,最终还会影响输出光束质 量。所以在考虑设计参量时,仍然 把增益板的平均温升 ΔT 控制在 80K 以下,最大表面应力值为材料 破坏阈值 240MPa 的 1/5,平均温 升可以表示为

$$\Delta T = \frac{E_{\text{heat}}}{mc_{\text{p}}(t)} \tag{6}$$

其中:*E*_{heat} 是激光发射期间在介质 内产生的热量,数值估算为 0.66~ 0.83 倍的激光输出能,*m* 是介质板 的质量(kg), *c*_p(*t*)介质的比热 *c*_p(0) =405 J·kg⁻¹·K⁻¹。

5 光学畸变

理想的无限大平板没有一阶 热焦距,光程的二次畸变对实际系 统影响很小;但在有限尺寸条件 下,由于抽运不均匀引起温度在*x* (或 *z*)方向变化,使得光程沿*x* 轴 发生变化,光程变化量 Δ*p*(*x*)分别 正比于介质温度和应力^{I8}:

$$\Delta p(x) = \left(\frac{\mathrm{d}n}{\mathrm{d}T_{\mathrm{slab}}}\right) b \overline{T(x)} - B_{\mathrm{slab}} \ b \overline{\sigma_{yy}(x)}$$
(7)

其中 $\frac{\mathrm{d}n}{\mathrm{d}T_{\mathrm{slab}}}$ 是激光介质的温度系数

(15×10⁻⁶/K), $\overline{T(x)}$ 是激光介质在 y方向相对于整个介质板平均温度 线上的平均温差, $\overline{\sigma_{yy}}(x)$ 是 y 方向 的平均应力, B_{slab} 是一个与光传播 方向和偏振方向有关的量,约为– 2.4/(TPa)。对由于抽运不均匀引起 的光程差作了估算,当介质板厚度 为 1.5cm, 被吸收抽运光强平均值 为 1.2MW/m², 抽运光强沿 x 方向

第43卷,第8期 2006年8月

aser & Optoelectronics Progress

不均匀度为 10%,在 *x* 方向引起的 光程差为 1~2μm。

6 介质冷却

固体热容激光器的冷却方式 有三种:水冷、气冷和喷雾制冷。根 据实际使用要求,一般冷却时间为 30s。这就要求设计冷却装置时要 满足两个条件:较高的制冷效率和 激光介质在冷却过程中产生的应 力必须小于激光介质的破坏阈值。

热容激光器的冷却过程可以 用无内热源一维系统的瞬态导热 方程来描述¹⁰:

$$\begin{vmatrix} \frac{\partial T(y,t)}{\partial t} - \gamma \frac{\partial^2 T(y,t)}{\partial y^2} = 0 \\ T(y,t)|_{t=0} = T_{\max} \qquad (8) \\ -k \frac{\partial T(\pm b/2,t)}{\partial y} = h[T(\pm b/2,t) - T_f] \end{cases}$$

 $T_{\rm f}$ 为制冷介质的温度, $T_{\rm max}$ 为激光 发射刚停止时刻介质表面的温度, h为对流换热系数。该方程的解为

$$\frac{T(y,t)-T_{f}}{T_{\max}-T_{f}}=2\sum_{n=1}^{\infty}$$

$$\frac{\sin(\lambda_{n}b/2)}{\overline{\lambda_{n}b/2}+\sin(\lambda_{n}b/2)\cos(\lambda_{n}b/2)}$$

$$\exp[(-\gamma\lambda_{n}^{2})t]\cos(\lambda_{n}y) \quad (9)$$
式(9)中 λ_{n} 是超越函数

 $\lambda_n b/2 \tan(\lambda_n b/2) = \frac{hb/2}{k} = Bi$ (10) 的根, Bi 为毕奥数。由式(9)可得到

冷却期间介质板 y 方向任意一点 温度和介质板表面应力 o_s。

热容激光器在激光发射刚停 止时刻介质内总热量 *E*_{heat} 如式(6) 表示,单位时间内制冷液从介质板 单位表面带走的热量 *q* 可表示为

q=h(*T*_s-*T*_f) (11) *T*_s为介质板表面温度,由于制冷, 在介质板表面产生的最大应力^[1]

 $\sigma_{\max} = q \frac{0.33 \alpha' E b}{(1 - \nu)k} \tag{12}$

实验中发现当 Nd:GGG 增益板 的厚度超过 2cm 时,仅靠调节冷却 介质对流系数是不能降低冷却时间。 这是因为冷却时间依赖增益介质板

图 5 冷却时间与热交换系数关系

内部和外部的热阻。内热阻与外热阻 之比定义为毕奥数,简写 Bi[®]

$$Bi = \frac{hV/S}{k} \tag{13}$$

其中 h 为冷却液的对流换热系数, V 为增益板体积,S 为增益板冷却 面积,k 为增益板热导率。

图 5 直线对应厚度为 2cm 板 表面在冷却初期受到的最大张应 力。冷却时间与热交换关系曲线是 根据公式(9)所得,计算值与国外实 验报道^四相符。以 100 kW 级激光输 出为例,对于厚2cm,两边同时冷却 的 GGG 增益板,k=0.065W/(cm・ K),*h*=0.13W/(cm²·K),即*Bi*=2。当 Bi≥1,则内热阻大于外热阻,即使 增加对流系数 h 也不会明显降低冷 却时间,相反h的增加会使增益板 的应力增加 (h>0.13W/(cm²·K),初 始应力超过140MPa,超过应力极 限。于是不得不通过减小增益板厚 度来降低冷却时间,理论和实验表 明:1cm 厚板冷却 (板中心温度从 348K 冷却到 293K) 时间需 30s,厚 度 b≥2cm 冷却时间将会大大延 长。这个结果显示:在设计大能量器 件时,宁可增加增益介质的面积,也 不要过量增加介质的厚度,确保介 质冷却效果。

7 功率标定和温度对输出的 影响

一般固体激光器最大激光平

均功率输出通常受两个条件的限制:材料的热破坏应力和自发放大 受激发射寄生振荡。对于固体热容 激光器除了要满足这两个条件外, 还必须考虑到:固体热容激光器在 激光脉冲发射期间不冷却,介质平 均温度不断上升,必然会对激活粒 子的能级布居发生影响,使得发射 激光脉冲能量逐个递减。为此有必 要对固体热容激光器的一般输出 公式进行推导,对与固体热容激光 器输出能量有关的平均温升 ΔT 的 最大值确定进一步理解。

如图6所示,比热参量

$$\chi = \frac{h\nu_{14} - h\nu_{32}}{h\nu_{32}} = \frac{1.53 - (1.42 - 0.26)}{1.42 - 0.26}$$

=0.32 (14)
是一个与介质的光谱参量有关的

*上*一十马升顶的几语参重有关的 $比热量,则热转换效率<math>\eta$

$$\eta = \frac{\chi}{1 + \chi} \tag{15}$$

光转换效率 $\eta_{\rm L}$

$$\eta_{\rm L} = 1 - \eta = \frac{1}{1 + \chi} \tag{16}$$

光电子器件与技术 35

图 7 热沉积功率是输出功率的函数

激光期间,沉积在介质内的热 功率 Pheat

 $P_{heat}=2 \times I \times \eta_c \times \eta_{coup} \times S \times \eta_{abs} \times \eta_{q}$ =2× $I \times S \times \eta_t$ (17) 式是 S 为激光介质表面积, η_{coup} 为 耦合系数, η_{abs} 为吸收系数, η_q 为量 子转换效率, η_c 为传输效率, η_t 为 总的热转换效率。激光期间由于热 沉积,介质平均温升 ΔT 为

$$\Delta T = \frac{P_{\text{heat}} \times t}{m \times c_{\text{p}}} \tag{18}$$

这里 m 为激光介质质量,t 为激光 发射时间, c_p 为激光介质比热,输 出能量 E_{out} 与介质平均温升 ΔT 之 间关系为

$$E_{\text{out}} = \eta_{\text{extr}} \times \frac{E_{\text{heat}}}{\chi} = \frac{\eta_{\text{extr}}}{\chi} \times m \times c_{\text{p}} \times \Delta T$$
(19-1)

其中 η_{extr} 为腔提取效率。

由图 7 可知,热沉积功率正比 于激光输出功率和光-光转换效 率。因此提高抽运光的耦合效率, 使更多的抽运光被吸收,是提高固 体热容激光器输出的关键。式(19-1)也可表示为

 $\frac{E_{out}}{V} = \eta_{extr} \times \frac{\rho \times c_p \times \Delta T}{\chi}$ (19-2) 这就是固体热容激光器输出能量 与介质体积和平均温升的基本方 程。以 Nd:GGG 为例,这里 c_p = 0.405J/(g·K), $\eta_{extr} = 0.6$, $\rho = 7$ g/cm³ 为介质密度,实际取 $\chi = 0.4$ 。激光 期间介质许可温升约 $\Delta T = 100$ K,由

36 光电子器件与技术

式(19)得出单位体积发射脉冲串能量约为450J。式(19)的重要性在于固体热容激光器输出能量与介质质量和温升的乘积成正比,它的推导没有考虑到介质温升对激光输出的消极影响。美国利弗莫尔实验室(LLNL)对式(19)作了修正

$$P_{\text{out}} = \frac{P_{\text{heat}}\eta_{\text{extr}}}{\chi} - \frac{n_0 V h v \eta_{\text{extr}} \exp[-E_{\text{II}}/(K_{\text{b}}T)]}{\tau_{\text{heat}}} f (20)$$

其中 $n_0=1.86\times10^{20}$ /cm³为激活离子的浓度, $\tau_{iiie}=5\times10^{-4}$ s为激光上能级寿命, $E_{II}=0.23$ eV为激光下能态能

量,f=0.1为工作因子,K_b=1.38×10⁻²³

J/K 为波尔兹曼常数,T 为介质温

度。式(20)的右边第二项为修正项。

当*E*₁≪*K*_b*T*时,增益与温度无关,

后项可以忽略;可以认为常温下激

光下能级粒子是空的,但随着每个

抽运脉冲产生的温度积累,下能级

粒子在新的温度条件下进行再分

图 8 脉冲能量与发射时间关系

8 抽运阈值和小信号增益系数

同其它四能级激光器一样,激 光介质的抽运阈值可以表示为^[13]

$$P_{\rm th} = \frac{I_{\rm s} V \delta}{\eta_{\rm q} L_{\rm g}} \tag{21}$$

式中 P_{th} 为需吸收的光抽运功率阈 值, I_s=4700W/cm² 为增益介质 Nd³⁺ :GGG 的饱和光强, V 为增益介质

布,这个分布相当于激光下能级朝 基态下降了 Δ*E*,如式(20)右边第二 项所示,这时激光下能级粒子就不 可忽视了。

计算表明,介质温度由常温上 升80K,激光脉冲能量下降约15%。 作者模拟了 100kW 激光输出,采 用9块13cm×13cm×2cmNd:GGG 介质板,光-光效率20%,激光发射 10s 后平均介质温度上升 83K。图 8 给出了脉冲能量与发射时间的关 系,这一结果同国外报道的实验结 果基本相符[10],如果把激光材料的 发射截面随温度增长呈负指数的 关系考虑进去,激光阈值会进一步 提高,输出能量还会有所下降[12-13]。 为了提高发射稳定性,在应用式 (19)设计介质板尺寸时应适当放大 余量,减小平均温升,与介质初始 温度有关的环境温度越低越好。因 此平均温升 ΔT 应该是最佳激光系 统的一个上限参量;在抽运功率不 变的条件下,它的值为最低允许脉 冲能量值所对应的介质温度。

体积, δ =0.5(T+L)为光子在谐振腔 内单程损耗,T=0.75 是谐振腔透射 率,L=0.015 是工作物质内部损耗, η_q =0.95, L_g 是增益介质的长度。

以 100kW 激光器为例:介质 体积 V=13cm×13cm×2cm×9,光– 光效率为 20%,可得 P_{th}=0.32 MW, 约为总抽运光输出功率的 6%,相 当于单位体积抽运阈值为 43 W/ cm³(峰值功率)。小信号增益系数 g₀ 可以表示为

 $g_0 = \frac{\eta_{\rm g} \eta_{\rm s} P_{\rm ab}}{I_{\rm s} V} = \frac{0.72 P_{\rm ab}}{I_{\rm s} V} \qquad (22)$

这里 P_{ab} 是指被激光介质吸收的抽运 功率。如果峰值吸收功率 $P_{ab}=2MW$, 则小信号增益系数 $g_0=0.1 \text{ cm}^{-1}$ 。

增益介质最大横向尺寸的确 定直接关系到系统储能的有效提 取。在高能状态下,Nd:GGG 片内 会产生寄生振荡,消耗大量的高能 态粒子,从而使激光系统增益减 小,抽运阈值增大,输出能量下降。

aser & Optoelectronics Progress

寄生振荡阈值的条件是由小信号 增益系数 g₀与增益介质的最大横 向尺寸 D 的乘积来决定,对于重复 频率工作的激光器^[14]

 $g_0 \times D \leq 2.5$ (23)根据国外有关文献报道,Nd: GGG 的平均小信号增益系数 go 为 0.1/cm。为了提高器件输出,增益板 四周都有包边材料,抑制寄生振 荡。更细致分析可以看到即使在增 益板两边抽运光强度完全相同的 条件下,储能密度沿厚度方向的分 布也是十分不均匀,随着吸收深度 的增加,储能密度很快衰减。钕离 子浓度越高,衰减越快,中心(y=0) 的储能密度要比介质板表面低,如 图 2 所示。寄生振荡往往在增益板 的表面就先形成,造成激光上能级 粒子数减少,输出下降。

9 结论

本文对固体热容激光器的工作

参考文献

过程和特性作了讨论,从结果来看要 提高热容激光器输出效率,必须

1) 提高抽运光的耦合效率,抽 运光的单色性以及光谱频率稳定 性。在灯抽运固体激光器时,固体板 内沉积的热量主要是抽运吸收灯发 射的紫外和红外波段的光造成的; 在半导体激光抽运时,固体板内沉 积的热量主要是光量子转换过程中 造成的,其比例很低。因此只要介质 能吸收更多的抽运能量,大部分还 是转换为有用的激光。

2) 不论从介质板冷却效果还 是从介质板对抽运光吸收均匀性 来考虑,介质板的厚度不宜过大, 上限为2cm。

3) 在用式(19)设计介质板体 积时,尽可能放大余量。因为四能 级介质的激光阈值很小,在总抽运 功率不变条件下,单位面积抽运强 度减弱不会降低总输出;而更有利 于输出稳定性。

1 G.F.Albrecht, S.B.Sutton, George V *et al.*. Solid state heat capacity disk laser [J]. *Laser and Particle Beams*, 1998, **16**(4):645~625 2 C.B.Baxi, O.Gutierrez. Evaluation of gain media cooling for the SSHCL [C]. Sixteenth Annual Solid State and Diode Laser

Technology Review, New Mexico Organized and Hosted By:DEPS

3 http://www.llnl.gov/IPandC/HSARPA.php

- 4 Ying Chen, Bin Chen, Patel M K R et al.. Calculation of thermal gradient induced stress birefringence in slab laser- II [J]. *IEEE*, J. Quant. Electron., 2004, 40(7):917~928
- 5 Todd S. Rutherford, William M. Tulloch. Gustafson *et al.*. Edge-pumped quasi-three-level slab lasers: design and power scaling [J]. *IEEE*. J. Quant.Electron., 2000, **36**(2):205 ~219

6 Yoichi Sato, Taira T. Saturation factors of pump absorption in solid-state laser [J]. IEEE J. Quant. Electron., 2004, 40(3):270~280

7 梁昆森. 数学物理方法[M]. 北京:人民教育出版社, 1979, 3:268

8 Thomas J. Kane, Eggleston J, Byer R. The slab geometry laser-part:thermal effects in a finite slab [J]. *IEEE J. Quant. Electron.*, 1985, **21**(8):1195~1210

9 J.R.威尔蒂. 工程传热学[M]. 任泽霈 罗棣庵 等译. 北京:人民教育出版社, 1982

- 10 C.B. Dane, Laurence Flath. Army solid state laser program:design, operation, and mission analysis for a heat-capacity laser [C].14th Annual solid state and diode laser technology review, New Mexico, 2001
- 11 Michael Bass, Weichman L S, Vigil s et al... The temperature dependence of Nd³⁺ doped solid-state laser [J]. IEEE J. Quant. Electron., 2003, 39(6):741~748
- 12 C.T.Walters, J.L.Dulancy, Campell B E et al.. Nd:glass burst laser with kW average power output [J]. IEEE J. Quant. Electron., 1995, **31**(2):293~330

13 周炳琨,高以智,陈倜嵘 等. 激光原理[M]. 北京:国防工业出版社,1983,124

14 John Vetrovec. Active mirror amplifier for high-average power [C]. Proc. SPIE, 2001, 4270:45~55

